LIPSCHITZ SPACES AND HARMONIC MAPPINGS

DAVID KALAJ

ABSTRACT. In [9] the author proved that every quasiconformal harmonic mapping between two Jordan domains with $C^{1,\alpha}$, $0 < \alpha \leq 1$, boundary is bi-Lipschitz, providing that the domain is convex. In this paper we avoid the restriction of convexity. More precisely we prove: any quasiconformal harmonic mapping between two Jordan domains Ω_j, $j = 1, 2$, with $C^{1,\alpha}$, $j = 1, 2$ boundary is bi-Lipschitz.

1. INTRODUCTION AND NOTATION

A function w is called harmonic in a region D if it has the form $w = u + iv$ where u and v are real-valued harmonic functions in D. If D is simply-connected, then there are two analytic functions g and h defined on D such that w has the representation

$$w = g + \overline{h}.$$

If w is a harmonic univalent function, then by Lewy’s theorem (see [17]), w has a non-vanishing Jacobian and consequently, according to the inverse mapping theorem, w is a diffeomorphism. If k is an analytic function and w is a harmonic function then $w \circ k$ is harmonic. However $k \circ w$, in general is not harmonic.

Let $P(r, x - \varphi) = \frac{1 - r^2}{2\pi(1 - 2r \cos(x - \varphi) + r^2)}$ denotes the Poisson kernel. Then every bounded harmonic function w defined on the unit disc $U := \{z : |z| < 1\}$ has the following representation

$$w(z) = P[w_b](z) = \int_0^{2\pi} P(r, x - \varphi)w_b(e^{ix})dx,$$

where $z = re^{i\varphi}$ and w_b is a bounded integrable function defined on the unit circle $S^1 := \{z : |z| = 1\}$.

Let $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$. We will consider two matrix norms:

$$|A| = \max\{|Az| : z \in \mathbb{R}^2, |z| = 1\} \quad \text{and} \quad |A|_2 = \left(\sum_{i,j} a_{i,j}^2\right)^{1/2},$$

and the matrix function

$$l(A) = \min\{|Az| : |z| = 1\}.$$
Let \(w = u + iv : D \mapsto G, D, G \subset \mathbb{C} \), be differentiable at \(z \in D \). By \(\nabla w(z) \) we denote the matrix \(\begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix} \). For the matrix \(\nabla w \) we have
\[
|\nabla w| = |w_z| + |w_{\bar{z}}|,
\]
\[
|\nabla w|^2 = (|w_x|^2 + |w_y|^2)^{1/2} = \sqrt{2}(|w_z|^2 + |w_{\bar{z}}|^2)^{1/2}
\]
and
\[
l(\nabla w) = ||w_z| - |w_{\bar{z}}||.
\]
Thus
\[
(1.2) \quad |\nabla w| \leq |\nabla w|^2 \leq 2|\nabla w|.
\]
A homeomorphism \(w : D \mapsto G \), where \(D \) and \(G \) are subdomains of the complex plane \(\mathbb{C} \), is said to be \(K \)-quasiconformal (\(K \)-q.c), \(K \geq 1 \), if \(w \) is absolutely continuous on a.e. horizontal and a.e. vertical line and
\[
(1.3) \quad \left| \frac{\partial w}{\partial x} \right|^2 + \left| \frac{\partial w}{\partial y} \right|^2 \leq 2KJ_w \quad \text{a.e. on } D,
\]
where \(J_w \) is the Jacobian of \(w \) (cf. [1], pp. 23–24). Notice that condition (1.3) can be written as
\[
|w_{\bar{z}}| \leq k|w_z| \quad \text{a.e. on } D \text{ where } k = \frac{K - 1}{K + 1} \quad \text{i.e. } K = \frac{1 + k}{1 - k},
\]
or in its equivalent form
\[
(1.4) \quad \frac{(|\nabla w|^2)}{K} \leq J_w \leq K(l(\nabla w))^2.
\]
We will focus on harmonic quasiconformal mappings between Jordan domains with smooth boundary and will investigate their Lipschitz character.

Recall that a mapping \(w : D \mapsto G \) is said to be \(C \)–Lipschitz (\(C > 1 \)) (\(C \)-co-Lipschitz) \((0 < c)\) if
\[
|w(z_2) - w(z_1)| \leq C|z_2 - z_1|, \quad z_1, z_2 \in D,
\]
\[
(c|z_2 - z_1| \leq |w(z_2) - w(z_1)|, \quad z_1, z_2 \in D).
\]

2. BACKGROUND AND STATEMENT OF THE MAIN RESULT

It is well known that a conformal mapping of the unit disk onto itself has the form
\[
w = e^{i\varphi} \frac{z - a}{1 - \bar{a}z}, \quad \varphi \in [0, 2\pi), \quad |a| < 1.
\]
By the Riemann mapping theorem there exists a Riemann conformal mapping of the unit disk onto a Jordan domain \(\Omega = \text{int } \gamma \). By Caratheodory’s theorem it has a continuous extension to the boundary. Moreover if \(\gamma \in C^{m, \alpha} \), then the Riemann conformal mapping has \(C^{m, \alpha} \) extension to the boundary, see [29]. Conformal mappings are quasiconformal and harmonic. Hence quasiconformal harmonic mappings are natural generalization of conformal mappings. The first characterization of quasiconformal harmonic mappings was started by O. Martio in [18]. Hengartner and Schober have shown that, for a given second dilatation \(a = \frac{f_z}{f_{\bar{z}}} \), with
||a|| < 1) there exist a q.c. harmonic mapping \(f \) between two Jordan domains with analytic boundary ([4, Theorem 4.1]). Recently there has been a number of authors who are working on the topic. Using the result of E. Heinz ([5]): If \(w \) is a harmonic diffeomorphism of the unit disk onto itself with \(w(0) = 0 \), then

\[
|w_z|^2 + |w_{ar{z}}|^2 \geq \frac{1}{\pi^2};
\]

O. Martio ([18]) observed that, every quasiconformal harmonic mapping of the unit disk onto itself is co-Lipschitz. Mateljević, Pavlović and Kalaj, have shown that the family of quasiconformal and harmonic mapping share with conformal mappings the following property: if \(w \) is harmonic q.c. mapping of the unit disk onto a Jordan domain with rectifiable boundary, then \(w \) has absolutely continuous extension to the boundary, see [12]. What happens if the boundary of a co-domain is “smoother than rectifiable”? M. Pavlović [23], proved that every quasiconformal selfmapping of the unit disk is Lipschitz continuous, using the Mori’s theorem on the theory of quasiconformal mappings. Partyka and Sakan ([22]) yield explicit Lipschitz and co-Lipschitz constants depending on a constant of quasiconformality. Since the composition of a harmonic mapping and of a conformal mapping is itself harmonic, using Kelllogg’s theorem (Proposition 3.3), these theorems have a generalization to the class of mappings from arbitrary Jordan domain with \(C^{1,\alpha} \) boundary to the unit disk. However the composition of a conformal and a harmonic mapping is not, in general, a harmonic mapping. This means in particular that the results of this kind for arbitrary co-domain do not follow from the case of the unit disk and Kelllogg’s theorem. The situation of co-domain different from the unit disk firstly has been considered in [15], and there has been shown that every harmonic quasiconformal mapping of the half-plane onto itself is bi-Lipschitz. Moreover in [15] have been given two characterizations of those mapping, the first one in terms of boundary mapping, using the Hilbert transforms of the derivative of boundary function, and the second one deals with integral representation, with the help of analytic functions. The facts concerning Hilbert transforms can be found in [30]. Concerning those situations (the disk and the half-plane) see also [16]. The author ([11]) extended Heinz theorem ([5]) for the harmonic mappings from the unit disk onto a convex domain. This in turn implies that quasiconformal harmonic mappings of the unit disk onto a convex domain are co-Lipschitz ([7]). Using the new method the results ([23]) have been extended properly by the author and Mateljević in [9], [19], and [14]. The extensions are:

Let \(\Omega_1 \) and \(\Omega \) be Jordan domains, let \(\mu \in (0, 1], \, a \in \Omega_1 \) and let \(f : \Omega_1 \rightarrow \Omega \) be a harmonic homeomorphism.

(a) If \(f \) is \(K \) q.c and \(\partial \Omega_1, \partial \Omega \in C^{1,\mu} \), then \(f \) is Lipschitz with Lipschitz constant \(c_0(\Omega_1, \Omega, K, a, w(a)) \). Moreover for almost every \(t \in \partial \Omega_1 \) there exists

\[
\lim_{z \to t, z \in \Omega_1} \nabla f(z) = \nabla f(t).
\]

(b) If \(f \) is q.c and if \(\partial \Omega_1, \partial \Omega \in C^{1,\mu} \) and \(\Omega \) is convex, then \(f \) is bi-Lipschitz.
(c) If \(\Omega_1 \) is the unit disk, \(\Omega \) is convex, and \(\partial \Omega \in C^{1,p} \), then \(f \) is quasiconformal if and only if its boundary function \(f_b \) is bi-Lipschitz and the Hilbert transformations of its derivative is in \(L^\infty \).

(d) If \(f \) is q.c and if \(\Omega \) is convex then the boundary functions \(f_b \) is bi-Lipschitz in the Euclidean metric and Cauchy transform \(C[f_b] \) of its derivative is in \(L^\infty \).

(e) If \(f \) is q.c and if \(\Omega \) is convex then the inverse of boundary functions \(g_b \) is Lipschitz in the Euclidean metric and Cauchy transform \(C[g_b'] \) of its derivative is in \(L^\infty \).

Concerning the items (a), (b) and (c) we refer to [9], and for the items (d) and (e) see [19] and [21].

Let now \(f \) be a quasiconformal \(C^2 \) diffeomorphism from a \(C^1, \alpha \) Jordan domain \(\Omega_1 \) onto a \(C^2, \alpha \) Jordan domain \(\Omega \).

(f) If there exists a constant \(M \) such that

(2.2) \[|\Delta f| \leq M|f_z \cdot f_{\bar{z}}|, \quad z \in \Omega, \]

then \(f \) has bounded partial derivatives. In particular, it is a Lipschitz mapping. For the item (f) we refer to [14].

The result (f) has been generalized in [13] as follows:

(g) If there exist constants \(M \) and \(N \) such that

(2.3) \[|\Delta f| \leq M|\nabla f|^2 + N, \quad z \in \Omega, \]

then \(f \) has bounded partial derivatives in \(\Omega_1 \). In particular it is a Lipschitz mapping in \(\Omega_1 \).

For several dimensional generalizations we refer to [8], [20], [2] and [10].

Because of the lack of generalization of the Heinz theorem for non convex domains, it was intrigue to investigate the q.c. harmonic mappings of the unit disk onto the image domain that is not convex. Namely it has been an open problem until now that, if the assumption of convexity on an image domain \(\Omega \) was important or not in proving the theorem that a harmonic q.c. mapping of the unit disk onto \(\Omega \) is bi-Lipschitz.

In the following theorem we avoid the restriction of convexity.

Theorem 2.1 (The main theorem). Let \(w = f(z) \) be a \(K \) quasiconformal harmonic mapping between a Jordan domain \(\Omega_1 \) with \(C^{1,\alpha} \) boundary and a Jordan domain \(\Omega \) with \(C^{2,\alpha} \) boundary. Let in addition \(a \in \Omega_1 \) and \(b = f(a) \). Then \(w \) is bi-Lipschitz. Moreover there exists a positive constant \(c = c(K, \Omega_1, \Omega, a, b) \geq 1 \) such that

(2.4) \[\frac{1}{c} |z_1 - z_2| \leq |f(z_1) - f(z_2)| \leq c|z_1 - z_2|, \quad z_1, z_2 \in \Omega_1. \]

3. THE PROOF OF THE MAIN THEOREM

The key of the proof is Lemma 3.2, which could be considered as a global version of the following well known lemma:

Lemma 3.1 (Hopf’s Boundary Point lemma). [26] and [6]. Let \(u \) satisfies \(\Delta u \geq 0 \) in \(D \) and \(u \leq M \) in \(D \), \(u(P) = M \) for some \(P \in \partial D \). Assume that \(P \) lies on
the boundary of a ball $B \subset D$. If u is continuous on $D \cup P$ and if the outward directional derivative $\frac{\partial u}{\partial n}$ exists at P, then $u \equiv M$ or

$$\frac{\partial u}{\partial n} > 0.$$

Lemma 3.2. Let u satisfies $\Delta u \geq 0$ in $R_\rho = \{ z : \rho \leq |z| < 1 \}$, $0 < \rho < 1$, u be continuous on R_ρ, $u(t) = 0$ for $t \in S^1$. Assume that the radial derivative $\frac{\partial u}{\partial r}$ exists almost everywhere at $t \in S^1$. Let $M(u, \rho) := \max_{|z| = \rho} u(z)$. Then for the positive constant

$$c(u, \rho) = \frac{2M(u, \rho)}{\rho^2(1 - e^1/\rho^2 - 1)}$$

there holds

$$\frac{\partial u(t)}{\partial r} > c(u, \rho), \text{ for a.e. } t \in S^1.$$

Proof. Consider the auxiliary function $h^A_\rho(z) = e^{-A|z|^2} - e^{-A}$, where $A > 0$ is a constant to be chosen later. Then

$$\Delta h^A_\rho(z) = 4Ae^{A|z|^2}(A|z|^2 - 1).$$

Hence it has the property that $h^A_\rho(z) > 0$, $z \in R_\rho$, and that

$$\Delta h^A_\rho(z) \geq 0, \rho \leq |z| \leq 1,$$

if

$$A \geq \rho^{-2}, \text{ for example } A = \rho^{-2}.$$

The function $h^A_\rho(z)$ is of class C^2 in R_ρ, and

$$h^A_\rho(z) = 0 \text{ on } S^1.$$

The function $v^A_\rho = u + \varepsilon h^A_\rho(z), \varepsilon > 0$, is of class C^2 in the interior of R_ρ and continuous in R_ρ. Moreover, by (3.5),

$$v^A_\rho \leq 0 \text{ on } S^1.$$

As $M(u, \rho) < 0$ we can choose a constant ε so that

$$M(u, \rho) + \varepsilon(e^{-Ag_\rho^2} - e^{-A}) \leq 0.$$

For example

$$\varepsilon = \frac{M(u, \rho)}{e^{-A} - e^{-Ag_\rho^2}}.$$

Then we have

$$v^A_\rho \leq 0 \text{ also on } S(0, \rho).$$

By the hypothesis, $\Delta u \geq 0$ in R_ρ, and by (3.3) it follows

$$\Delta v^A_\rho > 0, z \in R_\rho.$$
(3.6), (3.8), and (3.9) imply that $v^A_{\varrho} \leq 0$ holds in the whole of R_{ϱ}. This follows from the elementary fact that v^A_{ϱ} cannot have a positive maximum in the interior of R_{ϱ}. But $v^A_{\varrho} \leq 0$ in R_{ϱ} and $v^A_{\varrho} = 0$ at $t \in S^1$ implies that

$$0 \leq \lim_{R \to 1 - 0} \frac{v^A_{\varrho}(Rt) - v^A_{\varrho}(t)}{R - 1} = \frac{\partial v^A_{\varrho}(t)}{\partial r} = \frac{\partial u(t)}{\partial r} + \varepsilon \frac{\partial h^A_{\varrho}(t)}{\partial r}.$$}

Furthermore

$$\min_{s \in S^1} \frac{\partial h^A_{\varrho}(s)}{\partial r} = -2Ae^{-A} < 0.$$}

Thus for almost every $t \in S^1$ there holds

$$\frac{\partial u(t)}{\partial r} \geq -\varepsilon \min_{s \in S^1} \frac{\partial h^A_{\varrho}(s)}{\partial r} = \frac{2AM(u, \varrho)}{1 - e^{(1-\varrho^2)A}} = c(u, \varrho) > 0.$$

□

To continue we need the following propositions:

Proposition 3.3 (Kellogg). [3] If a domain $D = \text{Int}(\Gamma)$ is $C^{1,\alpha}$ and ω is a conformal mapping of \mathbb{U} onto D, then ω' and $\ln \omega'$ are in Lip_α. In particular, $|\omega'|$ is bounded from above and below on \mathbb{U} by two positive constants.

Let Γ be a smooth Jordan curve and $\beta(s)$ the angle of the tangent as a function of arc length. We say that Γ has a Dini-continuous curvature if $\beta'(s)$ is continuous and

$$|\beta'(s_2) - \beta'(s_1)| \leq \omega_1(s_2 - s_1) (s_1 < s_2),$$

where $\omega_1(x)$ is an increasing function that satisfies

$$\int_0^1 \frac{\omega_1(s)}{s} ds < \infty.$$}

The next proposition is due to Kellogg and to Warschawski.

Proposition 3.4. [24, Theorem 3.6]. Let ω be a conformal mapping of the unit disk onto a Jordan domain that is bounded by a Jordan curve with Dini-continuous curvature. Then $\omega''(z)$ has a continuous extension to \mathbb{U}. In particular $|\omega''|$ is bounded from above on \mathbb{U}.

Notice that if Γ is $C^{2,\alpha}$ then Γ has Dini-continuous curvature. We will finish the proof of Theorem 2.1 using the following lemma.

Lemma 3.5. Let $w = f(z)$ be a K quasiconformal harmonic mapping of the unit disk onto a $C^{2,\alpha}$ Jordan domain Ω such that $w(0) = a \in \Omega$. Then there exists a constant $C(K, \Omega, a) > 0$ such that

$$|\frac{\partial w}{\partial r}(t)| \geq C(K, \Omega, a)$$

for almost every $t \in S^1$.

□
Proof. Let g be a conformal mapping of Ω onto the unit disk with $g(a) = 0$. Take $w_1 = g \circ w$. Then
\begin{equation}
\Delta w_1 = 4g''(w)w_z \cdot w_{\bar{z}} + g'(w)\Delta w
\end{equation}
(3.11)
\[= 4g''(w)w_z \cdot w_{\bar{z}} = 4\frac{g''}{|g'|^2}w_{1z} \cdot w_{1\bar{z}}.\]
Combining (3.11) and (1.4) we obtain
\begin{equation}
|\Delta w_1| \leq \left|\frac{g''}{g'}\right| |\nabla w_1|^2 - l(\nabla w_1)^2 \leq \left(1 - \frac{1}{K^2}\right) \left|\frac{g''}{|g'|^2}\right| |\nabla w_1|^2.
\end{equation}
(3.12)
Let $h(z) = |w_1|^2$. Let us find two constants $B > 0$ and $\varrho \in (0, 1)$ such that the function
\[\varphi(z) := \chi(h(z)) = \frac{1}{B}(e^{Rh(z)} - e^B)\]
is subharmonic on \{ $z : \varrho < |z| < 1$ \}. Clearly $\varphi(z) \leq 0$. On the other hand we have
\begin{equation}
\Delta \varphi = \chi''(h)|\nabla h|^2 + \chi'(h)\Delta h.
\end{equation}
(3.13)
Furthermore
\begin{equation}
\Delta h = 2|\nabla w_1|^2 + 2 \langle \Delta w_1, w_1 \rangle.
\end{equation}
(3.14)
Let $w_1 = \rho s, \rho = |w_1|, s = e^{i\psi}$. Then
\begin{equation}
|\nabla h| = 2\rho|\nabla \rho|.
\end{equation}
(3.15)
To continue observe that
\[\nabla w_1 = (\nabla \rho)^T s + \rho \nabla s\]
and thus
\[|\nabla w_1|^2 = |\rho \nabla s|^2 + |\nabla \rho \cdot s|^2 + 2\rho \nabla \rho l \langle \nabla s l, s \rangle, l \in \mathbb{R}^2.\]
Hence
\begin{equation}
|\nabla w_1|^2 = \rho^2|\nabla s|^2 + |\nabla \rho|^2.
\end{equation}
(3.16)
Choose $l_1 : |l_1| = 1$ so that $\nabla s l_1 = 0$. Then by (3.16) we infer
\[|\nabla w_1 l_1| \leq |\nabla \rho l_1|.
\]
According to the definition of quasiconformal mappings we obtain
\begin{equation}
K^{-1}|\nabla w_1| \leq |\nabla \rho|.
\end{equation}
(3.17)
From (3.15) and (3.17) it follows that
\begin{equation}
|\nabla h| \geq \frac{2\rho}{K}|\nabla w_1|.
\end{equation}
(3.18)
Combining (1.2), (3.12), (3.13), (3.14) and (3.18) we obtain
(3.19) \[\Delta \varphi \geq \left(\chi'' \frac{4 \rho^2}{K^2} + 2 \chi' - 2 \left(1 - \frac{1}{K^2} \right) \chi' \frac{|g''|}{|g'|^2} \right) |\nabla w_1|^2. \]

Furthermore

(3.20) \[\chi'(h) = e^{Bh} \]
and

(3.21) \[\chi''(h) = Be^{Bh}. \]
By (3.19), (3.20) and (3.21) we obtain

(3.22) \[\Delta \varphi \geq \left(B \frac{4 \rho^2}{K^2} + 2 \left(1 - \frac{1}{K^2} \right) \frac{|g''|}{|g'|^2} \right) e^{Bh(z)} |\nabla w_1|^2. \]

As \(w_1 = \rho s \) is \(K \) quasiconformal selfmapping of the unit disk with \(w_1(0) = 0 \), by Mori’s theorem ([27]) it satisfies the doubly inequality:

(3.23) \[\left| \frac{z}{4^{1-1/K}} \right| \leq \rho \leq 4^{1-1/K} |z|^{1/K}. \]

By (3.23) for \(\rho \leq |z| \leq 1 \) where

(3.24) \[\rho := 4^{-K} \]
we have

(3.25) \[\rho \geq 4^{1-K^2-K}. \]
Now we choose \(B \) such that

\[\frac{4B\rho^2}{K^2} + 2 - 2 \left(1 - \frac{1}{K^2} \right) \frac{|g''|}{|g'|^2} \geq 0, \]
i.e. in view of Propositions 3.3 and 3.4, and (3.25), for example take:

(3.26) \[B := \max \left\{ \frac{1}{2} \sup_{z \in \Omega} \left| 1 - \left(1 - \frac{1}{K^2} \right) \frac{|g''|}{|g'|^2} \right| K^2 4^{K^2+K-1}, 1 \right\}. \]

According to Lemma 3.2, and to (2.1) the function

\[\varphi(z) = \chi(h(z)) = \frac{1}{B} (e^{Bh(z)} - e^B) \]
satisfies

\[\frac{\partial \varphi}{\partial R}(t) = e^{Bh(t)} \left\langle g'(w(t)) \cdot \frac{\partial w}{\partial R}(t), w_1(t) \right\rangle \geq c(\varphi, \rho), \]
almost everywhere in \(\mathbb{S}^1 \), where \(c(\varphi, \rho) \) is defined by (3.1). On the other hand by the right hand inequality in (3.23) it follows that

(3.27) \[\varphi(z) \leq \frac{1}{B} (e^{4^{1-K^2} B} - e^B) \text{ for } |z| = \rho. \]
Thus
\[
M(\varphi, \rho) = \max_{|z| = \rho} \varphi(z) \leq \frac{1}{B} (e^{4 - \frac{2}{K} B} - e^{B}) < 0.
\]

According to (3.1) and (3.2) it follows that
\[
\left| \frac{\partial w}{\partial r}(t) \right| \geq e^{-B} c(\varphi, \rho) \max_{\zeta \in \partial \Omega} \left| g'(\zeta) \right| = 2 e^{-B} M(\varphi, \rho) \rho^2 \left(1 - \frac{e^1}{\rho^2} - 1 \right) \left| g' \right|_{\infty} > 0,
\]
almost everywhere in \(S^1 \). By (3.24), (3.26) and (3.28), we can take
\[
C(K, \Omega, a) = 2 e^{-B} M(\varphi, \rho) \rho^2 \left(1 - \frac{e^1}{\rho^2} - 1 \right) \left| g' \right|_{\infty}
\]
\((C(K, \Omega, a))\) do not depends on \(w = f(z) \).

Proof of Theorem 2.1. In view of item a) from the Background of this paper, it is enough to prove that, \(w \) is co-Lipschitz continuous (under the above conditions). Moreover by Proposition 3.3 the unit disk could be taken as the domain of the mapping.

We will consider two cases:

1. **Case "\(w \in C^1(\overline{U}) \)".**

 Let \(l(\nabla w)(t) = ||w_z(t)|| - |w_z(t)| \). As \(w \) is \(K \) q.c., according to Lemma 3.5 we have
\[
l(\nabla w)(t) \geq \frac{|\nabla w(t)|}{K} \geq \frac{\left| \frac{\partial w}{\partial r}(t) \right|}{K} \geq C(K, \Omega, a),
\]
for \(t \in S^1 \).

 Since \(w \) is a harmonic diffeomorphism, by the Lewy theorem ([17]) \((|w_z| > 0)\), it defines the bounded subharmonic function
\[
S(z) := \left| \frac{w_z}{w_z} \right| + \left| \frac{1}{w_z} \cdot C(K, \Omega, a) \right|
\]
on the unit disk. According to (3.29), \(S(z) \) is bounded on the unit circle by 1. By the maximum principle, this implies that \(S \) is bounded on the whole unit disk by 1.

 This in turn implies that for every \(z \in U \)
\[
l(\nabla w)(z) \geq \frac{C(K, \Omega, a)}{K}.
\]

2. **Case "\(w \notin C^1(\overline{U}) \)".**

Definition 3.6. Let \(G \) be a domain in \(\mathbb{C} \) and let \(a \in \partial G \). We will say that \(G_a \subset G \) is a neighborhood of \(a \) if there exists a disk \(D(a, r) := \{z : |z - a| < r\} \) such that \(D(a, r) \cap G \subset G_a \).

Let \(t = e^{i\beta} \in S^1 \), then \(w(t) \in \partial \Omega \). Let \(\gamma \) be an arc-length parametrization of \(\partial \Omega \) with \(\gamma(s) = w(t) \). Since \(\partial \Omega \in C^{2, \alpha} \) there exists a neighborhood \(\Omega_t \) of \(w(t) \) with \(C^{2, \alpha} \) Jordan boundary such that,
\[
\Omega_t := \Omega_t + i\gamma'(s) \cdot \tau \subset \Omega, \text{ and } \partial \Omega_t \subset \Omega \text{ for } 0 < \tau \leq \tau_t \,(\tau_t > 0).
\]
An example of a family Ω_t^τ such that $\partial \Omega_t^\tau \in C^{1,\alpha}$ and with the property (3.32) has been given in [9]. An easily modification yields a family of Jordan domains Ω_t^τ with $\partial \Omega_t^\tau \in C^{2,\alpha}$, $0 \leq \tau \leq \tau_1$ with the property (3.32).

Let $a_t \in \Omega_t$ be arbitrary. Then $a_t + i \gamma'(s) \cdot \tau \in \Omega_t^\tau$. Take $U_\tau = f^{-1}(\Omega_t^\tau)$. Let η_t^τ be a conformal mapping of the unit disk onto U_τ such that $\eta_t^\tau(0) = f^{-1}(a_t) + i \gamma'(s) \cdot \tau$, and $\arg \frac{d\eta_t^\tau}{dz}(0) = 0$. Then the mapping

$$f_t^\tau(z) := f(\eta_t^\tau(z)) - i \gamma'(s) \cdot \tau$$

is a harmonic K quasiconformal mapping of the unit disk onto Ω_t satisfying the condition $f_t^\tau(0) = a_t$. Moreover

$$f_t^\tau \in C^1(U).$$

Using case "$w \in C^1(U)$", it follows that

$$|\nabla f_t^\tau(z)| \geq C(K, \Omega_t, a_t).$$

On the other hand

$$\lim_{\tau \to 0^+} \nabla f_t^\tau(z) = \nabla (f \circ \eta_t)(z)$$

on the compact sets of U as well as

$$\lim_{\tau \to 0^+} \frac{d\eta_t^\tau}{dz}(z) = \frac{d\eta_t}{dz}(z),$$

where η_t is a conformal mapping of the unit disk onto $U_0 = f^{-1}(\Omega_t)$ with $\eta_t(0) = f^{-1}(a_t)$. It follows that

$$|\nabla f_t(z)| \geq C(K, \Omega_t, a_t).$$

Using the Schwartz’s reflexion principle to the mapping η_t, and using the formula

$$\nabla (f \circ \eta_t)(z) = \nabla f \cdot \frac{d\eta_t}{dz}(z)$$

it follows that in some neighborhood \tilde{U}_t of $t \in S^1$ $(D(t, r_t) \cap U \subset \tilde{U}_t$ for some $r_t > 0)$ the function f satisfies the inequality

$$|\nabla f(z)| \geq \frac{C(K, \Omega_t, a_t)}{\min \{|\eta_t(\zeta)| : \zeta \in \partial \tilde{U}_t \cap S^1\}} =: \tilde{C}(K, \Omega_t, a_t) > 0. \quad (3.33)$$

Since S^1 is a compact set it can be covered by a finite family $\partial \tilde{U}_{t_j} \cap S^1 \cap D(t, r_t/2)$, $j = 1, \ldots, m$. It follows that the inequality

$$|\nabla f(z)| \geq \min \{\tilde{C}(K, \Omega_{t_j}, a_{t_j}) : j = 1, \ldots, m\} =: \tilde{C}(K, \Omega, a) > 0, \quad (3.34)$$

there holds in the annulus

$$\tilde{R} = \left\{ z : 1 - \frac{\sqrt{3}}{2} \min_{1 \leq j \leq m} r_{t_j} < |z| < 1 \right\} \subset \bigcup_{j=1}^m \tilde{U}_{t_j}.$$

This implies that the subharmonic function S defined in (3.30) is bounded in U. According to the maximum principle it is bounded by 1 in the whole unit disk. This in turn implies again (3.31) and consequently
\[
\frac{C(K, \Omega, a)}{K} |z_1 - z_2| \leq |w(z_1) - w(z_2)|, \quad z_1, z_2 \in \mathbb{U}.
\]

Corollary 3.7. If \(w \) is q.c. harmonic mapping of the unit disk onto a \(C^{2, \alpha} \) Jordan domain \(\Omega \), then \(\text{ess sup} \{ J_w(z), z \in \mathbb{U} \} > 0 \).

Example 3.8. \(w = P[e^{i(x+\sin x)}](z), z \in \mathbb{U} \) is a harmonic diffeomorphism of the unit disk onto itself having smooth extension to the boundary and

\[
0 \leq J_w(-1) \leq \left| \frac{\partial w}{\partial r}(re^{i\varphi}) \right|_{r=1, \varphi=\pi} \cdot \left| \frac{\partial w}{\partial \varphi}(e^{i\varphi}) \right|_{\varphi=\pi}
\]

\[
= \left| \frac{\partial w}{\partial r}(re^{i\varphi}) \right|_{r=1, \varphi=\pi} \cdot |(1 + \cos \varphi)|_{\varphi=\pi} = 0,
\]

i.e. \(J_w(-1) = 0 \). Hence the condition of quasiconformality in Corollary 3.7 is essential.

3.1. Remarks.
It seems natural that the assumption \(\partial \Omega \in C^{2, \alpha} \) in the main theorem can be replaced by \(\partial \Omega \in C^{1, \alpha} \) however we do not have the proof of this fact. It remains an open problem, whether the norm of the first derivative of harmonic diffeomorphism between the unit disk and a smooth Jordan domain \(\Omega \) is bounded below by a constant depending on \(\Omega \). The result of this kind was proved by E. Heinz, [5], for the case of \(\Omega \) being the unit disk and by the author in [11] for \(\Omega \) being a convex domain. In this paper it was proved that the result hold for harmonic quasiconformal mappings without the restriction on convexity of co-domain.

Acknowledgment. I thank the referee for providing constructive comments and help in improving the contents of this paper.

REFERENCES

