ON QUASICONFORMAL SELF-MAPPINGS OF THE UNIT DISK SATISFYING POISSON’S EQUATION

DAVID KALAJ AND MIROSLAV PAVLOVIĆ

Abstract. Let \(QC(K, g) \) be a family of \(K \) quasiconformal mappings of the open unit disk onto itself satisfying the PDE \(\Delta w = g, g \in C(U) \), \(w(0) = 0 \).

It is proved that \(QC(K, g) \) is a uniformly Lipschitz family. Moreover, if \(|g|_\infty \) is small enough, then the family is uniformly bi-Lipschitz. The estimations are asymptotically sharp as \(K \to 1 \) and \(|g|_\infty \to 0 \), so \(w \in QC(K, g) \) behaves almost like a rotation for sufficiently small \(K \) and \(|g|_\infty \).

1. Introduction and statement of the main result

In this paper \(U \) denotes the open unit disk in \(\mathbb{C} \), and \(S^1 \) denotes the unit circle.

Also, by \(D \) and \(\Omega \) we denote open regions in \(\mathbb{C} \). For a complex number \(z = x + iy \), its norm is given by \(|z| = \sqrt{x^2 + y^2} \). For a real \(2 \times 2 \) matrix

\[
A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix},
\]

we will consider the matrix norm \(|A| = \sup \{|Az| : |z| = 1\} \) and the matrix function \(l(A) = \inf \{|Az| : |z| = 1\} \).

A real-valued function \(u \), defined in an open subset \(D \) of the complex plane \(\mathbb{C} \), is harmonic if it satisfies Laplace’s equation:

\[
\Delta u(z) := \frac{\partial^2 u}{\partial x^2}(z) + \frac{\partial^2 u}{\partial y^2}(z) = 0 \quad (z = x + iy).
\]

A complex-valued function \(w = u + iv \) is harmonic if both \(u \) and \(v \) are real harmonic.

We say that a function \(u : D \to \mathbb{R} \) is ACL (absolutely continuous on lines) in the region \(D \), if for every closed rectangle \(R \subset D \) with sides parallel to the \(x \) and \(y \)-axes, \(u \) is absolutely continuous on a.e. horizontal and a.e. vertical line in \(R \). Such a function has of course, partial derivatives \(u_x, u_y \) a.e. in \(D \).

The definition carries over to complex valued functions.

Definition 1.1. A homeomorphism \(w : D \to \Omega \), between open regions \(D, G \subset \mathbb{C} \), is \(K \)-quasiconformal (\(K \geq 1 \)) (abbreviated \(K-q.c. \)) if

1. \(w \) is ACL in \(D \),
2. \(|w_z| \leq k|w_z| \) a.e. (\(k = \frac{K}{K+1} \)).

Here

\[
w_z := \frac{1}{2} (w_x - iw_y) \quad \text{and} \quad w_x := \frac{1}{2} (w_x + iw_y)
\]

2000 Mathematics Subject Classification. Primary 30C65; Secondary 31B05.

Key words and phrases. Quasiconformal harmonic maps, Lipschitz condition.
are complex partial derivatives (cf. [1], pp. 3, 23–24).

If by $\nabla w(z)$ we denote the formal derivative of $w = u + iv$ at z:

$$\nabla w = \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix},$$

then the condition (2) of Definition 1.1 can be written as

$$K^{-1}(|\nabla w|^2) \leq J_w \leq K(l(\nabla w))^2 \quad \text{a.e. on } D,$$

where $J_w = \det(\nabla u)$ is the Jacobian of w. The above fact follows from the following well-known formulae

$$J_w(z) = |w_z|^2 - |w_\bar{z}|^2, \quad |\nabla w| = |w_z| + |w_\bar{z}|, \quad l(\nabla w) = ||w_z| - |w_\bar{z}||.$$

Notice that if w is K–quasiconformal, then w^{-1} is K–quasiconformal as well (this follows from (1.1)).

Let P be the Poisson kernel, i.e. the function

$$P(z, e^{i\theta}) = \frac{1 - |z|^2}{|z - e^{i\theta}|^2},$$

and let G be the Green function of the unit disk, i.e. the function

$$G(z, \omega) = \frac{1}{2\pi} \log \left| \frac{1 - z\bar{\omega}}{z - \omega} \right| \quad z, \omega \in U, \ z \neq \omega.$$

The functions $z \mapsto P(z, e^{i\theta})$, $z \in U$, and $z \mapsto G(z, \omega)$, $z \in U \setminus \{\omega\}$ are harmonic.

Let $f : S^1 \to \mathbb{C}$ be a bounded integrable function on the unit circle S^1 and let $g : U \to \mathbb{C}$ be continuous. The solution of the equation $\Delta w = g$ in the unit disk satisfying the boundary condition $w|_{S^1} = f \in L^1(S^1)$ is given by

$$w(z) = P[f](z) - G[g](z)$$

$$= \frac{1}{2\pi} \int_0^{2\pi} P(z, e^{i\theta}) f(e^{i\theta}) d\theta - \int_{\partial U} G(z, \omega) g(\omega) \, dm(\omega),$$

$|z| < 1$, where $dm(\omega)$ denotes the Lebesgue measure in the plane. It is well known that if f and g are continuous in S^1 and in \overline{U} respectively, then the mapping $w = P[f] - G[g]$ has a continuous extension \tilde{w} to the boundary, and $\tilde{w} = f$ on S^1. See [9, pp. 118–120].

We will consider those solutions of the PDE $\Delta w = g$ that are quasiconformal as well and will investigate their Lipschitz character.

Recall that a mapping $w : D \to \Omega$ is said to be C–Lipschitz ($C > 0$) (c–co-Lipschitz ($c > 0$)) if

$$|w(z_1) - w(z_2)| \leq C|z_1 - z_2|, \quad z_1, z_2 \in D,$$

$$0 < c < \infty.$$
[28], [26], [30] for additional results concerning the Lipschitz character of harmonic quasiconformal mappings w.r.t the hyperbolic metric.

The following theorem is a generalization of an analogous theorem for the unit disk due to Pavlović [21] and of an asymptotically sharp version of Pavlović theorem due to Partyka and Sakan [20] in the case of harmonic quasiconformal mappings.

The following fact is the main result of the paper.

Theorem 1.2. Let \(K \geq 1 \) be arbitrary and let \(g \in C(\mathbb{U}) \) and \(|g|_\infty := \sup_{w \in \mathbb{U}} |g(w)| \).

Then there exist constants \(N(K) \) and \(M(K) \) with \(\lim_{K \to 1} M(K) = 1 \) such that:

\[
\left(\frac{1}{M(K)} - \frac{7 |g|_\infty}{6} \right) |z_1 - z_2| \leq |w(z_1) - w(z_2)| \leq (M(K) + N(K)|g|_\infty)|z_1 - z_2|.
\]

The proof of Theorem 1.2, given in Section 3, depends on the following two propositions:

Proposition 1.3. [13] Let \(w \) be a quasiconformal \(C^2 \) diffeomorphism from a bounded plane domain \(D \) with \(C^{1,\alpha} \) boundary onto a bounded plane domain \(\Omega \) with \(C^{2,\alpha} \) boundary. If there exist constants \(a \) and \(b \) such that

\[
(1.6) \quad |\Delta w| \leq a|\nabla w|^2 + b, \quad z \in D,
\]

then \(w \) has bounded partial derivatives in \(D \). In particular it is a Lipschitz mapping in \(D \).

Proposition 1.4 (Mori’s Theorem). [5, 22, 31] If \(w \) is a \(K \)-quasiconformal self-mapping of the unit disk \(U \) with \(w(0) = 0 \), then there exists a constant \(M_1(K) \), satisfying the condition \(M_1(K) \to 1 \) as \(K \to 1 \), such that

\[
(1.7) \quad |w(z_1) - w(z_2)| \leq M_1(K)|z_1 - z_2|^{K^{-1}}.
\]

See also [2] and [19] for some constants that are not asymptotically sharp.

The mapping \(|z|^{-\alpha} z^{-K^{-1}} z \) shows that the exponent \(K^{-1} \) is optimal in the class of arbitrary \(K \)-quasiconformal homeomorphisms.

2. Auxiliary results

In this section, we establish some lemmas needed in the proof of the main results.

Lemma 2.1. Let \(w \) be a harmonic function defined on the unit disk and assume that its derivative \(v = \nabla w \) is bounded on the unit disk (or equivalently, according to Rademacher’s theorem [7], let \(w \) be Lipschitz continuous). Then there exists a mapping \(A \in L^\infty(S^1) \) defined on the unit circle \(S^1 \) such that \(\nabla w(z) = P[A](z) \) and for almost every \(e^{i\theta} \in S^1 \) the relation

\[
(2.1) \quad \lim_{r \to 1} \nabla w(re^{i\theta}) = A(e^{i\theta})
\]

holds. Moreover the function \(f(e^{i\theta}) := w(e^{i\theta}) \) is differentiable almost everywhere in \([0,2\pi]\) and the formula

\[
A(e^{i\theta}) \cdot (ie^{i\theta}) = \frac{\partial}{\partial \theta} f(e^{i\theta})
\]

holds.
Proof. For the proof of the first statement of the lemma, see, for example, [3, Theorem 6.13 and Theorem 6.39].

Next, since
\[|\frac{\partial}{\partial \theta} w(re^{i\theta})| = |r \nabla w(re^{i\theta}) \frac{\partial}{\partial \theta} e^{i\theta}| \leq |r \nabla w(re^{i\theta})| \cdot |\frac{\partial}{\partial \theta} e^{i\theta}| \]
\[\leq \sup_{\theta} |A(e^{i\theta})| \cdot |\frac{\partial}{\partial \theta} e^{i\theta}|, \]
the Lebesgue Dominated Convergence Theorem yields
\[f(e^{i\theta}) = \lim_{r \to 1} w(re^{i\theta}) = \lim_{r \to 1} \int_{\theta}^{\theta} \frac{\partial}{\partial \varphi} w(re^{i\varphi}) d\varphi + f(e^{i\theta_0}) = \int_{\theta}^{\theta} \frac{\partial}{\partial \varphi} e^{i\varphi} d\varphi + f(e^{i\theta_0}). \]

Differentiating in θ we get
\[\frac{\partial}{\partial \theta} f(e^{i\theta}) = A(e^{i\theta}) \cdot \frac{\partial}{\partial \theta} e^{i\theta} = A(e^{i\theta})(ie^{i\theta}) \]
almost everywhere in S^1. □

Lemma 2.2. If $f(e^{it}) = e^{i\psi(t)}$, $\psi(2\pi) = \psi(0) + 2\pi$, is a diffeomorphism of the unit circle onto itself, then
\[|f(e^{it}) - f(e^{is})| \leq |\psi' \cdot |e^{it} - e^{is}|, \]
where $|\psi'| = \max_{0 \leq \tau \leq 2\pi} \{|\psi'(\tau)| : 0 \leq \tau \leq 2\pi\} = \max_{0 \leq \tau \leq 2\pi} \{|\partial_r f(e^{i\tau})| : 0 \leq \tau \leq 2\pi\}$.

Proof. Take the function
\[h(t) = \frac{|f(e^{it}) - f(e^{is})|}{|e^{it} - e^{is}|}. \]
Then we have
\[h(t) = \frac{\sin \frac{\psi(t) - \psi(s)}{2}}{\sin \frac{t - s}{2}}. \]
In order to estimate the maximum of the function h, we found out that the stationary points of it satisfy the equation
\[\tan \frac{\psi(t) - \psi(s)}{2} = \tan \frac{t - s}{2} \cdot \psi'(t). \]
Substituting (2.4) to (2.3) we obtain
\[
\begin{equation}
(2.5) \quad h^2(t) = \frac{1 + \tan^2 \frac{\psi(t) - \psi(s)}{2}}{1 + \tan^2 \frac{\psi(t) - \psi(s)}{2}} \psi'^2(t).
\end{equation}
\]

Now since
\[
2\pi = \psi(2\pi) - \psi(0) = \int_0^{2\pi} \psi'(\tau) d\tau,
\]

it follows that \(|\psi'|_\infty \geq 1\). If \(|\psi'(t)| \leq 1\) then from (2.5) it follows \(|h(t)| \leq |\psi'|_\infty\). If \(|\psi'(t)| > 1\), then again employing (2.5) we obtain \(|h(t)| \leq |\psi'|_\infty\). This implies the lemma.

Lemma 2.3. If \(z \in U\), and
\[
I(z) = \frac{1}{2\pi} \int_U \frac{1 - |\omega|^2}{|z - \omega| \cdot |1 - \bar{z}\omega|} \, dm(\omega),
\]
then
\[
(2.6) \quad \frac{1}{2} \leq I(z) \leq \frac{2}{3}.
\]

Both inequalities are sharp. Moreover the function \(z \mapsto I(z)\), is a radial function and decreasing for \(|z| \in [0,1]\).

Proof. For a fixed \(z\), we introduce the change of variables
\[
\frac{z - \omega}{1 - \bar{z}\omega} = \xi,
\]
or, what is the same,
\[
\omega = \frac{z - \xi}{1 - \bar{z}\xi}.
\]

Then
\[
I := \frac{1}{2\pi} \int_U \frac{1 - |\omega|^2}{|z - \omega| \cdot |1 - \bar{z}\omega|} \, dm(\omega)
\]
\[
= \frac{1}{2\pi} \int_U \frac{1 - |\xi|^2}{|\xi| \cdot |1 - \bar{z}\xi|} \, dm(\xi)
\]
\[
= \frac{1}{2\pi} \int_U \frac{1 - |\xi|^2}{|\xi| \cdot |1 - \bar{z}\xi|^2} (1 - |z|^2)^2 \, dm(\xi)
\]
\[
= \frac{1}{2\pi} \int_U \frac{(1 - |\xi|^2)(1 - |z|^2)^2}{|\xi|^3 |1 - \bar{z}\xi|^2} \, dm(\xi).
\]

Since
\[
1 - \bar{z}\xi = 1 - z \frac{z - \xi}{1 - \bar{z}\xi}
\]
\[
= \frac{1 - |z|^2}{1 - \bar{z}\xi},
\]
we see that
\[I = \frac{1}{2\pi} \int_{\mathcal{U}} \frac{(1 - |z|^2)(1 - |\xi|^2)}{|\xi| \cdot |1 - z\xi|^4} \, d\nu(\xi). \]

In the polar coordinates, we have
\[I = (1 - |z|^2) \int_0^1 (1 - \rho^2) \, d\rho \frac{1}{2\pi} \int_0^{2\pi} \frac{dt}{|1 - z\rho e^{it}|^4}. \]

By Parseval’s formula (see [24, Theorem 10.22]), we get
\[\frac{1}{2\pi} \int_0^{2\pi} \frac{dt}{|1 - z\rho e^{it}|^4} = \frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{n=0}^{\infty} (n + 1) (\bar{z}\rho)^n e^{nit} \right)^2 \, dt = \sum_{n=0}^{\infty} (n + 1)^2 |z|^{2n}. \]

whence
\[I = (1 - |z|^2) \sum_{n=0}^{\infty} \frac{2(n + 1)^2}{(2n + 1)(2n + 3)} |z|^{2n}. \]

Now the desired inequality follows from the simple inequality
\[\frac{1}{2} \leq c_n := \frac{2(n + 1)^2}{(2n + 1)(2n + 3)} \leq \frac{2}{3} \quad (n = 0, 1, 2, \ldots). \]

Setting $|z|^2 = r$, and $\varphi(r) = I(z)$, we obtain
\[\varphi'(r) = \sum_{n=1}^{\infty} n(c_n - c_{n-1}) r^{n-1}. \]

Since $c_n \leq c_{n-1}$ it follows that φ is decreasing, as desired. \hfill \Box

We need the following well-known propositions.

Proposition 2.4. [25] Let X be an open subset of \mathbb{R}, and Ω be a measure space. Suppose that a function $F: X \times \Omega \to \mathbb{R}$ satisfies the following conditions:

1. $F(x, \omega)$ is a measurable function of x and ω jointly, and is integrable over ω, for almost all $x \in X$ held fixed.
2. For almost all $\omega \in \Omega$, $F(x, \omega)$ is an absolutely continuous function of x.
 (This guarantees that $\partial F(x, \omega)/\partial x$ exists almost everywhere).
3. $\partial F / \partial x$ is "locally integrable" – that is, for all compact intervals $[a, b]$ contained in X:
 \[\int_a^b \left| \frac{\partial}{\partial x} F(x, \omega) \right| \, dx \, d\omega < \infty. \]

Then $\int_\Omega F(x, \omega) \, d\omega$ is an absolutely continuous function of x, and for almost every $x \in X$, its derivative exists and is given by
\[\frac{d}{dx} \int_\Omega F(x, \omega) \, d\omega = \int_\Omega \frac{\partial}{\partial x} F(x, \omega) \, d\omega. \]
The following proposition is well-known as well.

Proposition 2.5. [29, p. 24–26] Let \(\rho \) be a bounded (absolutely) integrable function defined on a bounded domain \(\Omega \subset \mathbb{C} \). Then the potential type integral

\[
I(z) = \int_{\Omega} \frac{\rho(\omega) \, dm(\omega)}{|z - \omega|}
\]

belongs to the space \(C(\mathbb{C}) \).

Lemma 2.6. Let \(\rho \) be continuous on the closed unit disc \(\mathbb{U} \). Then the integral

\[
J(z) = \frac{1}{2\pi} \int_{\mathbb{U}} \log \left| \frac{1 - z\overline{\omega}}{z - \omega} \right| \rho(\omega) \, dm(\omega)
\]

belongs to the space \(C^1(\mathbb{U}) \). Moreover

\[
\nabla J(z) = \frac{1}{2\pi} \int_{\mathbb{U}} \nabla \log \left| \frac{1 - z\overline{\omega}}{z - \omega} \right| \rho(\omega) \, dm(\omega).
\]

Proof. Straightforward calculations yield

\[
(2.8) \quad \nabla z \frac{1}{2\pi} \log \left| \frac{1 - z\overline{\omega}}{z - \omega} \right| = \frac{1}{2\pi} \left(\frac{1}{\omega - z} - \frac{\overline{\omega}}{1 - z\overline{\omega}} \right),
\]

and consequently

\[
(2.9) \quad \left| \nabla z \frac{1}{2\pi} \log \left| \frac{1 - z\overline{\omega}}{z - \omega} \right| \right| = \frac{1}{2\pi} \frac{1 - |\omega|^2}{|z - \omega||z\overline{\omega} - 1|}, \quad z \neq \omega.
\]

(Here \(\nabla \varphi(z, \omega) \) denotes the gradient of the function \(\varphi \) treated as a function of \(z \)). Let \(\Omega = \mathbb{U} \), and let \(\mu \) be the Lebesgue measure of \(\mathbb{U} \).

According to Lemma 2.3, condition (2.7) of Proposition 2.4 is satisfied. Applying now Proposition 2.4, and relation (2.8) together with Proposition 2.5, we obtain the desired conclusion. \(\square \)

Lemma 2.7. If \(g \) is continuous on \(\overline{\mathbb{U}} \), then the mapping \(Gg \) has a bounded derivative, i.e. it is Lipschitz continuous and the inequalities

\[
(2.10) \quad |\partial Gg| \leq \frac{1}{3} |g|_{\infty},
\]

and

\[
(2.11) \quad |\bar{\partial} Gg| \leq \frac{1}{3} |g|_{\infty}
\]

hold on the unit disk. Moreover \(\nabla Gg \) has a continuous extension to the boundary, and for \(e^{i\theta} \in S^1 \) there hold

\[
(2.12) \quad \partial Gg(e^{i\theta}) = -\frac{e^{i\theta}}{4\pi} \int_{|e^{i\theta} - \omega|^2} \frac{1 - |\omega|^2}{|e^{i\theta} - \omega|^2} g(\omega) \, dm(\omega),
\]

and

\[
(2.13) \quad \bar{\partial} Gg(e^{i\theta}) = -\frac{e^{i\theta}}{4\pi} \int_{|e^{i\theta} - \omega|^2} \frac{1 - |\omega|^2}{|e^{i\theta} - \omega|^2} g(\omega) \, dm(\omega).
\]

Finally, for \(e^{i\theta} \in S^1 \)
(2.14) \[|\partial G| \leq \frac{1}{4} |g|_\infty, \]

and

(2.15) \[|\partial G| \leq \frac{1}{4} |g|_\infty. \]

Proof. First of all for \(z \neq \omega \) we have

\[
G_z(z,\omega) = \frac{1}{4\pi} \left(\frac{1}{\omega - z} - \frac{\bar{\omega}}{1 - z\bar{\omega}} \right) = \frac{1}{4\pi} \frac{(1 - |\omega|^2)}{(z - \omega)(\bar{z}\omega - 1)},
\]

and

\[
G_{\bar{z}}(z,\omega) = \frac{1}{4\pi} \frac{(1 - |\omega|^2)}{(\bar{z} - \omega)(\bar{\omega}\bar{z} - 1)}.
\]

By Lemma 2.6 the potential type integral

\[
\partial Gz = \frac{1}{4\pi} \int_U \frac{1 - |\omega|^2}{|z - \omega||\bar{z}\omega - 1|} g(\omega) \, dm(\omega),
\]

exists and belongs to the space \(C(U) \).

According to Lemma 2.3 it follows that

\[|\partial G| \leq \frac{1}{4} |g|_\infty \int_U \frac{1 - |\omega|^2}{|z - \omega||\bar{z}\omega - 1|} \, dm(\omega), \]

and

\[|\partial G| \leq \frac{1}{3} |g|_\infty. \]

The inequality (2.10) is proved. Similarly we establish (2.11).

According to Lemma 2.5 it follows

(2.16) \[\partial G[f](z) = \int_U G_z(z,\omega) g(\omega) \, dm(\omega). \]

Next we have

(2.17) \[\lim_{z \to e^{i\theta},z \in D} G_z(z,\omega) = -\frac{1}{4\pi} \frac{e^{-i\theta}(1 - |\omega|^2)}{|e^{i\theta} - \omega|^2} \]

and

(2.18) \[\lim_{z \to e^{i\theta},z \in D} G_{\bar{z}}(z,\omega) = -\frac{1}{4\pi} \frac{e^{i\theta}(1 - |\omega|^2)}{|e^{i\theta} - \omega|^2}. \]

In order to deduce (2.12) from the last two relations, we use the Vitali theorem (see [6, Theorem 26.C]):

Let \(X \) be a measure space with finite measure \(\mu \), and let \(h_n : X \to \mathbb{C} \) be a sequence of functions that is uniformly integrable, i.e. such that for every \(\varepsilon > 0 \) there exists \(\delta > 0 \), independent of \(n \), satisfying

\[\mu(E) < \delta \implies \int_E |h_n| \, d\mu < \varepsilon. \]
Now: if \(\lim_{n \to \infty} h_n(x) = h(x) \) a.e., then
\[
\lim_{n \to \infty} \int_X h_n \, d\mu = \int_X h \, d\mu.
\]
(\dagger)

In particular, if
\[
\sup_n \int_X |h_n|^p \, d\mu < \infty, \quad \text{for some } p > 1,
\]
then (\dagger) and (\ddagger) hold.

Hence, to prove (2.12), it suffices to prove that
\[
\sup_{z \in \Omega} \int_{\Omega} \left(\frac{1 - |\omega|^2}{|z - \omega| \cdot |1 - \bar{z}\omega|} \right) g(\omega) \, dm(\omega) < \infty, \quad \text{for } p = 3/2.
\]

In order to prove this inequality, we proceed as in the case of Lemma 2.3. We obtain
\[
I_{p,g}(z) = \int_{\Omega} \left(\frac{1 - |\omega|^2}{|z - \omega| \cdot |1 - \bar{z}\omega|} \right)^p g(\omega) \, dm(\omega)
\]
\[
\leq |g|_\infty^p \int_{\Omega} \left(\frac{1 - |\omega|^2}{|z - \omega| \cdot |1 - \bar{z}\omega|} \right)^p \, dm(\omega)
\]
\[
= |g|_\infty^p \int_{\Omega} \frac{(1 - |z|^2)^{2-p}(1 - |\omega|^2)^p}{|\xi|^p |1 - \bar{z}\xi|^4} \, dm(\xi)
\]
\[
\leq |g|_\infty^{3/2}(1 - |z|^2)^{1/2} \int_{0}^{1} \rho^{-1/2}(1 - \rho^2)^{3/2} \int_{0}^{2\pi} |1 - \bar{z}\rho e^{i\varphi}|^{-4} \, d\varphi
\]
\[
\leq |g|_\infty^{3/2}(1 - |z|^2)^{1/2} \int_{0}^{1} \rho^{-1/2}(1 - \rho^2)^{3/2}(1 - |z|^3) \, d\rho.
\]

Now the desired result follows from the elementary inequality
\[
\int_{0}^{1} \rho^{-1/2}(1 - \rho^2)^{3/2}(1 - |z|^3) \, d\rho \leq C(1 - |z|^2)^{-1/2}.
\]

This proves (2.12). Similarly we prove (2.13). The inequalities (2.14) and (2.15) follow from (2.12) and (2.13) and Lemma 2.3.

A mapping \(w : D \to \Omega \) is proper if the preimage of every compact set in \(\Omega \) is compact in \(D \). In the case where \(D = \Omega = U \), the mapping \(w \) is proper if and only if \(|w(z)| \to 1 \) as \(|z| \to 1 \).

Lemma 2.8 (The main lemma). Let \(w \) be a solution of the PDE \(\Delta w = g \) that maps the unit disk onto itself properly. Let in addition \(w \) be Lipschitz continuous. Then there exist for a.e. \(t = e^{i\theta} \in S^1 \):
\[
(2.19) \quad \nabla w(t) := \lim_{r \to 1^-} \nabla w(rt)
\]
and
\[
(2.20) \quad J_w(t) := \lim_{r \to 1^-} J_w(re^{i\theta}),
\]
and the following relation
\[J_w(t) = \psi'(\theta) \frac{1}{2\pi} \int_0^{2\pi} \frac{|f(t) - f(e^{i\varphi})|^2}{|t - e^{i\varphi}|^2} d\varphi \]

(2.21)

\[+ \psi'(\theta) \int_0^1 r \left(\frac{1}{2\pi} \int_0^{2\pi} P(re^{i\varphi}, t) \langle g(rt), f(t) \rangle d\varphi \right) dr, \]

holds. Here \(\psi \) is defined by

\[e^{i\psi(\theta)} := f(e^{i\theta}) = w|_{S^1(e^{i\theta})}. \]

If \(w \) is biharmonic (\(\Delta \Delta w = 0 \)), then we have:

\[J_w(t) = \psi'(\theta) \frac{1}{2\pi} \int_0^{2\pi} \frac{|f(t) - f(e^{i\varphi})|^2}{|t - e^{i\varphi}|^2} d\varphi \]

(2.22)

\[+ \frac{\psi'(\theta)}{2} \int_0^1 \langle g(rt), f(t) \rangle dr, \quad t \in S^1. \]

For an arbitrary continuous \(g \) and \(|g|_{\infty} = \max_{|z| \leq 1} |g(z)| \) the inequality

\[|J_w(t) - \psi'(\theta)\frac{1}{2\pi} \int_0^{2\pi} \frac{|f(t) - f(e^{i\varphi})|^2}{|t - e^{i\varphi}|^2} d\varphi| \leq \frac{\psi'(\theta)|g|_{\infty}}{2}, \quad t \in S^1 \]

holds.

Proof. First of all, according to Lemma 2.7, \(G[g] \) has a bounded derivative, and there exists the function \(\nabla G[g](e^{i\theta}), e^{i\theta} \in S^1 \), which is continuous and satisfies the limit relation

\[\lim_{z \to e^{i\theta}, z \in D} \nabla G[g](z) = \nabla G[g](e^{i\theta}). \]

Since \(w = P[f] - G[g] \) has bounded derivative, from Lemma 2.1, it follows that there exists

\[\lim_{r \to 1-} \nabla P[f](re^{i\theta}) = \nabla P[f](e^{i\theta}). \]

Thus \(\lim_{r \to 1-} \nabla w(re^{i\theta}) = \nabla w(e^{i\theta}). \)

It follows that the mapping \(\chi : \chi(\theta) = f(e^{i\theta}) = f(t), \ t \in S^1 \), defines the outer normal vector field \(n_{\chi} \) almost everywhere in \(S^1 \) at the point \(\chi(\theta) = f(e^{i\theta}) = e^{i\psi(\theta)} = (\chi_1, \chi_2) \) by the formula:

\[n_{\chi}(\chi(\theta)) = \psi'(\theta) \cdot f(e^{i\theta}). \]

Let \(\varpi(r, \theta) := w(re^{i\theta}) \). According to Lemma 2.1, we obtain:

\[\lim_{r \to 1-} \varpi(r, \theta) = \chi'(\theta). \]

(2.25)

On the other hand, for almost every \(\theta \in S^1 \) we have

\[\frac{\chi_j(\theta) - \varpi_j(r, \theta)}{1 - r} = \varpi(r, \theta, \rho_j, \theta) \]

where \(r < \rho_{j,r,\theta} < 1, \ j = 1, 2 \). Thus we have:
\[(2.26) \quad \lim_{r \to 1^-} \varpi_j(r, \theta) = \lim_{r \to 1^-} \frac{\chi_j(\theta) - \varpi_j(r, \theta)}{1 - r}, \quad j \in \{1, 2\}.\]

Denote by \(p\) polar coordinates, i.e. \(p(r, \theta) = re^{i\theta}\).

We derive
\[
\lim_{r \to 1^-} J_{wop}(r, \theta) = \lim_{r \to 1^-} \left(\frac{\chi - P[f]}{1 - r}, \psi'(\theta) \cdot f(e^{i\theta}) \right) + \Lambda
\]
\[(2.27) = \lim_{r \to 1^-} \frac{1}{2\pi} \int_0^{2\pi} \frac{1 + r}{|e^{i\theta} - re^{i\varphi}|^2} \left\langle f(e^{i\theta}) - f(e^{i\varphi}), \psi'(\theta) \cdot f(e^{i\theta}) \right\rangle d\varphi + \Lambda
\]
\[(2.28) = \psi'(\theta) \frac{1}{2\pi} \int_0^{2\pi} \left| \frac{f(e^{i\theta}) - f(e^{i\varphi})}{|e^{i\theta} - e^{i\varphi}|^2} \right|^2 d\varphi + \Lambda,
\]
where
\[\Lambda = \lim_{r \to 1^-} \left(\frac{G|g|}{1 - r}, -i\chi_\theta \right).
\]

In order to estimate \(\Lambda\), observe first that
\[(2.29) \quad \lim_{z \to e^{i\theta}, \omega \in \mathbb{D}} \frac{G(z, \omega)}{1 - |z|} = \lim_{z \to e^{i\theta}, \omega \in \mathbb{D}} \frac{G(z, \omega) - G(e^{i\theta}, \omega)}{1 - |z|} = \frac{\partial G(re^{i\varphi}, \omega)}{\partial r}\bigg|_{r=1}.
\]

Since
\[\frac{\partial G(re^{i\varphi}, \omega)}{\partial r} = z_r G_z(re^{i\varphi}, \omega) + \bar{z}_r G_{\bar{z}}(re^{i\varphi}, \omega), \quad z_r = e^{i\theta}, \quad \bar{z}_r = e^{-i\theta},
\]
using (2.17) and (2.18) we obtain
\[(2.30) \quad \lim_{z \to e^{i\theta}, \omega \in \mathbb{D}} \frac{G(z, \omega)}{1 - |z|} = \frac{1}{2\pi} P(e^{i\theta}, \omega).
\]

On the other hand we have
\[(2.31) \quad J_{wop}(r, \theta) = rJ_w(re^{i\theta}).
\]

Combining (2.27), (2.29), (2.30) and (2.31) we obtain (2.21). Relations (2.22) and (2.23) follow from (2.21) and (1.3). If \(w\) is biharmonic, then \(g\) is harmonic and thus
\[(2.32) \quad \frac{1}{2\pi} \int_0^{2\pi} P(re^{i\varphi}, e^{i\theta}) \left\langle g(re^{i\varphi}), f(e^{i\theta}) \right\rangle d\varphi = \left\langle g(r^2 e^{i\theta}), f(e^{i\theta}) \right\rangle.
\]

This yields relation (2.22). \(\square\)
Lemma 2.9. If \(x \geq 0 \) is a solution of the inequality \(x \leq ax^a + b \), where \(a \geq 1 \) and \(0 \leq aa < 1 \), then

\[
(2.32) \quad x \leq \frac{a + b - aa}{1 - aa}.
\]

Observe that for \(a = 0 \), (2.32) coincides with \(x \leq a + b \), i.e. \(x \leq ax^a + b \).

Proof. We will use the Bernoulli’s inequality. \(x \leq ax^a + b = a(x + 1)^a + b \leq a(1 + \alpha(x - 1)) + b \). Relation (2.32) now easily follows. \(\square \)

3. The main results

Theorem 3.1. Let \(g \in C(\overline{U}) \). The family \(QC(K, g) \) of \(K \)-quasiconformal \((K \geq 1) \) self-mappings of the unit disk \(U \) satisfying the PDE \(\Delta w = g, w(0) = 0 \), is uniformly Lipschitz, i.e. there is a constant \(M' = M'(K, g) \) satisfying:

\[
(3.1) \quad |w(z_1) - w(z_2)| \leq M'|z_1 - z_2|, \quad z_1, z_2 \in U, \quad w \in QC(K, g).
\]

Moreover \(M'(K, g) \to 1 \) as \(K \to 1 \) and \(|g|_\infty \to 0 \).

In Remark 3.7 below is given a quantitative bound of \(M'(K, g) \).

Proof. Combining Proposition 1.3 and Lemma 2.8, in the special case where the range of a function is the unit disk, we obtain that there exist \(\nabla w \) and \(J_w \) almost everywhere in \(S^1 \), and the following inequality

\[
(3.2) \quad J_w(t) \leq \psi'(\theta) \left(\frac{1}{2\pi} \int_0^{2\pi} \frac{|f(e^{i\varphi}) - f(e^{i\theta})|^2}{|e^{i\varphi} - e^{i\theta}|^2} d\varphi + \frac{|g|_\infty}{2} \right)
\]

holds.

Now from

\[
|\nabla w(re^{i\theta})|^2 \leq KJ_w(re^{i\theta}),
\]

we obtain

\[
(3.3) \quad \lim_{r \to 1-} |\nabla w(re^{i\theta})|^2 \leq \lim_{r \to 1-} KJ_w(re^{i\theta}),
\]

almost everywhere in \([0, 2\pi]\). From Lemma 2.1, we deduce that

\[
(3.4) \quad \lim_{r \to 1-} \frac{\partial(w(re^{i\theta}))}{\partial \theta} = \frac{\partial f(e^{i\theta})}{\partial \theta} = \psi'(\theta)e^{i\psi(\theta)}
\]

almost everywhere in \([0, 2\pi]\). Since

\[
\frac{\partial w \circ S}{\partial \theta}(r, \theta) = ru'(re^{i\theta})(ie^{i\theta}),
\]

using (3.4) we obtain that

\[
(3.5) \quad \psi'(\theta) \leq \lim_{r \to 1} |\nabla w(re^{i\theta})|.
\]

From (3.2)-(3.5) we infer that

\[
|\nabla w(e^{i\theta})|^2 \leq K|\nabla w(e^{i\theta})| \left(\frac{1}{2\pi} \int_0^{2\pi} \frac{|f(e^{i\varphi}) - f(e^{i\theta})|^2}{|e^{i\varphi} - e^{i\theta}|^2} d\varphi + \frac{|g|_\infty}{2} \right)
\]

i.e.

\[
(3.6) \quad |\nabla w(e^{i\theta})| \leq K \left(\frac{1}{2\pi} \int_0^{2\pi} \frac{|f(e^{i\varphi}) - f(e^{i\theta})|^2}{|e^{i\varphi} - e^{i\theta}|^2} d\varphi + \frac{|g|_\infty}{2} \right).
\]
Let

\[M = \text{ess sup}_{0 \leq \tau \leq 2\pi} |\nabla w(e^{i\tau})|. \]

According to Lemma 2.2 and to relation (3.5) we obtain

\[|f(e^{i\psi}) - f(e^{i\theta})| \leq M|e^{i\psi} - e^{i\theta}|. \]

Let \(\mu = K^{-1}, \gamma = -1 + K^{-2}, \) and let \(\nu = 1 - 1/K. \) Let \(\varepsilon > 0. \) Then there exists \(\theta_{\varepsilon} \) such that

\[M(1 - \varepsilon) \leq |\nabla w(e^{i\theta_{\varepsilon}})|. \]

Applying now relation (3.6) and using (1.7), we obtain

\[(1 - \varepsilon)M \leq K\left(M^\nu \frac{1}{2\pi} \int_0^{2\pi} |e^{i\theta_{\varepsilon}} - e^{i\varphi}| |f(e^{i\theta_{\varepsilon}}) - f(e^{i\varphi})|^{2-\nu} d\varphi + \frac{|g|_\infty}{2}\right)\]

\[\leq KM^\nu M_1(K)^{1+\mu} \frac{1}{2\pi} \int_0^{2\pi} |e^{i\theta_{\varepsilon}} - e^{i\varphi}|^{\gamma} d\varphi + K|g|_\infty \]

\[\leq M_2(K)M^\nu + \frac{K|g|_\infty}{2}, \]

where

\[M_2(K) = KM_1(K)^{1+\mu} \frac{1}{2\pi} \int_0^{2\pi} |e^{i\theta_{\varepsilon}} - e^{i\varphi}|^{\gamma} d\varphi. \]

Letting \(\varepsilon \to 0 \) we obtain

\[M \leq M_2(K)M^\nu + \frac{K|g|_\infty}{2}. \]

From (3.8) we obtain

\[M \leq C_0 := \left(M_2(K) + \frac{K|g|_\infty}{2}\right)^{1/(1-\nu)} = \left(M_2(K) + \frac{K|g|_\infty}{2}\right)^{K}. \]

From Lemma 2.9, if

\[M_1(K)^{1+\mu} \frac{1}{2\pi} \int_0^{2\pi} |e^{i\theta_{\varepsilon}} - e^{i\varphi}|^{\gamma} d\varphi < \frac{1}{K-1} \]

and \(g \neq 0, \) we obtain

\[M \leq C_1 := \frac{M_2(K) + K|g|_\infty/2 - \nu M_2(K)}{1 - \nu M_2(K)}. \]

Let \(C_2 := \min\{C_0, C_1\}. \)

If \(g \equiv 0 \) then by (3.9) we get

\[M \leq C_2 := \left(M_2(K)\right)^{1/(1-\nu)}. \]

To continue observe that \(w - G[g] \) is harmonic. Thus

\[|\nabla w(z) - \nabla G(z)| \leq \text{ess sup}_{0 \leq \tau \leq 2\pi} |\nabla w(e^{i\tau}) - \nabla G[g(e^{i\tau})]|. \]

According to Lemma 2.3 and Lemma 2.7 it follows that:

\[|\nabla w(z)| \leq \text{ess sup}_{0 \leq \tau \leq 2\pi} |\nabla w(e^{i\tau})| + \frac{2}{3}|g|_\infty + \frac{1}{2}|g|_\infty. \]
Therefore the inequality (3.1) does hold for
\begin{equation}
M' = C_2 + \frac{7}{6} |g|_\infty.
\end{equation}

Using (1.7), it follows that
\[\lim_{|g|_\infty \to 0, K \to 1} M'(K) = 1. \]

\[\square \]

Lemma 3.2. If \(w \) is a \(K \)-q.c. self-mapping of the unit disk satisfying the PDE \(\Delta w = g \) and \(w(0) = 0 \), \(w|_{S^1(e^{i\theta})} = f(e^{i\theta}) = e^{i\psi(\theta)} \), \(g \in C(\overline{U}) \), then for almost every \(\theta \in [0, 2\pi] \) the relation
\begin{equation}
\frac{1}{2\pi} \int_0^{2\pi} |f(e^{i\theta}) - f(e^{i\varphi})|^2 \frac{d\varphi}{|e^{i\theta} - e^{i\varphi}|^2} \leq K \psi'(\theta) + \frac{|g|_\infty}{2}
\end{equation}
holds.

Proof. From (2.23) it follows that
\begin{equation}
\frac{J_w(e^{i\theta})}{\psi'(\theta)} = \frac{1}{2\pi} \int_0^{2\pi} |f(e^{i\theta}) - f(e^{i\varphi})|^2 \frac{d\varphi}{|e^{i\theta} - e^{i\varphi}|^2} - \frac{|g|_\infty}{2}.
\end{equation}

Using Lemma 2.1 we obtain
\begin{equation}
\psi'(\theta) = \left| \frac{\partial f(e^{i\theta})}{\partial \theta} \right| = \left| \lim_{r \to 1^-} \frac{\partial w(re^{i\theta})}{\partial \theta} \right|.
\end{equation}

On the other hand
\begin{equation}
\frac{\partial w(re^{i\theta})}{\partial \theta} = izw_z(re^{i\theta}) - i\bar{z}w_{\bar{z}}(re^{i\theta}) \quad (z = re^{i\theta}).
\end{equation}

Therefore
\begin{equation}
\left| \lim_{r \to 1^-} \frac{\partial w(re^{i\theta})}{\partial \theta} \right| \geq \|w_z(t)| - |w_{\bar{z}}(t)|| = l(\nabla w(t)) \quad (t = e^{i\theta}).
\end{equation}

As \(w \) is \(K \)-q.c., according to (1.1) it follows that
\begin{equation}
\frac{J_w(t)}{(l(\nabla w(t)))^2} \leq K.
\end{equation}
Combining (3.14) - (3.18) we obtain (3.13). \[\square \]

Lemma 3.3. Under the conditions and notations of Lemma 3.2, there exists a function \(m_1(K) \) such that \(\lim_{K \to 1} m_1(K) = 1 \) and
\begin{equation}
m(K) := \max \left\{ m_1(K) - \frac{4 - 5|g|_\infty}{4}, \frac{4 - 5|g|_\infty}{8} \right\} \leq K \psi'(\theta), \text{ for a.e. } \theta \in [0, 2\pi].
\end{equation}

Proof. Applying (1.7) to the mapping \(w^{-1} \), we obtain
\[|f(z) - f(w)| \geq M_1(K)^{-K}|z_1 - z_2|^K. \]
Using now relation (3.13) we obtain
\[K \psi'(\theta) \geq \frac{1}{2\pi} \int_0^{2\pi} \frac{|f(e^{i\theta}) - f(e^{i\varphi})|^2}{|e^{i\theta} - e^{i\varphi}|^2} \, d\varphi - \frac{|g|_\infty}{2} \]

(3.20)

\[\geq M_1(K)^{-2K} \frac{1}{2\pi} \int_0^{2\pi} |e^{i\theta} - e^{i\varphi}|^{2K-2} \, d\varphi - \frac{|g|_\infty}{2} \]

\[= m_1(K) - \frac{|g|_\infty}{2}, \]

where

\[m_1(K) = M_1(K)^{-2K} \frac{1}{2\pi} \int_0^{2\pi} |e^{i\theta} - e^{i\varphi}|^{2K-2} \, d\varphi. \]

Let us prove the second part of the inequality (3.19). Since \(w(0) = 0 \) we infer that \(P[f](0) = -G[g](0) \). Thus

\[P[f](0) = \int_U G(0, \omega) g(\omega) \, dm(\omega), \]

i.e. in polar coordinates

\[P[f](0) = \frac{1}{2\pi} \int_0^1 \int_0^{2\pi} r \log \frac{1}{r} g(\omega) \, dm(\omega). \]

Hence

\[|P[f](0)| \leq |g|_\infty \int_0^1 \frac{1}{r} \log \frac{1}{r} \, dr = \frac{|g|_\infty}{4}. \]

Next we have

\[K \psi'(\theta) \geq \frac{1}{2\pi} \int_0^{2\pi} \frac{|f(e^{i\theta}) - f(e^{i\varphi})|^2}{|e^{i\theta} - e^{i\varphi}|^2} \, d\varphi - \frac{|g|_\infty}{2} \]

(3.21)

\[\geq \frac{1}{2\pi} \int_0^{2\pi} \frac{1}{2} \left(1 - \text{Re} \left(\frac{f(e^{i\theta})}{e^{i\theta}} \right) \right) \, d\varphi - \frac{|g|_\infty}{2} \]

\[\geq \frac{1 - |P[f](0)|}{2} - \frac{|g|_\infty}{2} \]

\[\geq \frac{4 - 5|g|_\infty}{8}. \]

Combining (3.20) and (3.21) we obtain (3.19).

\[\square \]

Theorem 3.4. If \(w \) is a \(K \)-q.c. orientation preserving self-mapping of the unit disk satisfying the PDE \(\Delta w = g \), \(w(0) = 0 \), \(g \in C(\mathbb{D}) \), then for

\[m(K) = \max \left\{ M_1(K)^{-2K} \frac{1}{2\pi} \int_0^{2\pi} |e^{i\theta} - e^{i\varphi}|^{2K-2} \, d\varphi - \frac{|g|_\infty}{4}, \frac{4 - 5|g|_\infty}{8} \right\}, \]

the inequality

(3.22)

\[l(\nabla w) \geq \frac{m(K)}{K^2} - \frac{7|g|_\infty}{6} \]

where \(l(\nabla w(z)) = \min \{|\nabla w(z)t| : |t| = 1\} \), holds.
Proof. Assume, as we may, that

\[
\frac{m(K)}{K^2} - \frac{|g|_\infty}{2} \geq \left(\frac{m(K)}{K^2} - \frac{7|g|_\infty}{6} \right) \geq 0.
\]

From (3.19) and the definition of quasiconformality we deduce that:

\[
\frac{m(K)}{K^2} \leq \psi'(\theta) \leq \frac{|\nabla w(e^{i\theta})|}{K} \leq l(\nabla w),
\]

i.e

\[
\frac{m(K)}{K^2} \leq |w_z| - |w_{\bar{z}}|
\]

almost everywhere on the unit circle.

According to relations (2.14) and (2.15) we obtain

\[
(3.24) \quad \frac{m(K)}{K^2} - \frac{|g|_\infty}{2} \leq |P[f]_z| - |P[f']_z|
\]

almost everywhere on the unit circle.

To continue observe that, as \(w \) is q.c., it follows that \(f \) is a homeomorphism. Hence by Choquet-Radó-Kneser theorem \(P[f] \) is a diffeomorphism (see [15], [4] or [23]).

Thus \(h := P[f] \) is a harmonic diffeomorphism. According to the Heinz theorem ([8])

\[
|h_z| + |h_{\bar{z}}| \geq \frac{1}{\pi^2},
\]

which, in view of the fact that \(|h_z| \geq |h_{\bar{z}}| \), implies that

\[
|h_z| \geq \frac{\sqrt{2}}{2\pi}.
\]

Thus the functions

\[
a(z) := \frac{h_{\bar{z}}}{h_z} \quad \text{and} \quad b(z) := \frac{1}{h_z}\left(\frac{m(K)}{K^2} - \frac{|g|_\infty}{2} \right)
\]

are holomorphic and bounded on the unit disk. As \(|a| + |b| \) is bounded on the unit circle by 1 (see (3.23) and (3.24)), it follows that it is bounded on the whole unit disk by 1 because

\[
|a(z)| + |b(z)| \leq P[|a|_z](z) + P[|b|_z](z), \quad z \in \mathbb{U}.
\]

This in turn implies that for every \(z \in \mathbb{U} \)

\[
(3.25) \quad l(\nabla h) \geq \frac{m(K)}{K^2} - \frac{|g|_\infty}{2}.
\]

By (2.10) and (2.11) we obtain

\[
(3.26) \quad l(\nabla w) \geq \frac{m(K)}{K^2} - \frac{1}{2}|g|_\infty - \frac{2}{3}|g|_\infty.
\]

Having in mind the fact \(l(\nabla w(z)) = |\nabla w^{-1}(w(z))|^{-1} \), and putting Theorem 3.1 and Theorem 3.4 together we obtain:
Theorem 3.5. Let $\mathcal{QC}(K,g)$ be the family of orientation preserving K-q.c. self-mappings of the unit disk satisfying the equation $\Delta w = g$ and $w(0) = 0$. Then for $|g|_\infty$ small enough (for example if $|g|_\infty \leq \frac{12}{15 + 28K^2}$) the family $\mathcal{QC}(K,g)$ is uniformly bi-Lipschitz, i.e. there exists $M_0(K,g) \geq 1$ such that

$$M_0(K,g)^{-1} \leq \frac{|w(z_1) - w(z_2)|}{|z_1 - z_2|} \leq M_0(K,g), \ w \in \mathcal{QC}(K,g), \ \text{for } z_1, z_2 \in \mathbb{U}, \ z_1 \neq z_2.$$

Moreover

$$\lim_{|g|_\infty \to 0, K \to 1} M_0(K,g) = 1.$$

Example 3.6. Let $w(z) = |z|^\alpha z$, with $\alpha > 1$. Then w is twice differentiable $(1 + \alpha)$–quasiconformal self-mapping of the unit disk. Moreover

$$\Delta w = \alpha(2 + \alpha) \frac{|z|^\alpha}{z} = g.$$

Thus $g = \Delta w$ is continuous and bounded by $\alpha(2 + \alpha)$. However w is not co-Lipschitz (i.e. it does not satisfy (1.5)), because $l(\nabla w)(0) = |w_z(0)| - |w_z(0)| = 0$. This means that the condition “$|g|_\infty$ is small enough” in Theorem 3.5 cannot be replaced by the condition “g is arbitrary”.

Remark 3.7. Let $\mathcal{QC}_K(\mathbb{U})$ be the family of K–quasiconformal self-mappings of the unit disk. Let $M_1(K)$ be the Mori’s constant:

$$M_1(K) = \inf \{ M : |f(z_1) - f(z_2)| \leq M|z_1 - z_2|^{1/K}, z_1, z_2 \in \mathbb{U}, f \in \mathcal{QC}_K(\mathbb{U}), f(0) = 0 \}.$$

In [22] is proved that

$$M_1(K) \leq 16^{1 - 1/K} \min \left\{ \left(\frac{23}{8} \right)^{1-1/K}, (1 + 2^{3 - 2K})^{1/K} \right\}.$$

Since for $\alpha > -1$

$$\frac{1}{2\pi} \int_0^{2\pi} |e^{i\theta} - e^{i\varphi}|^\alpha d\varphi = \frac{2^{\alpha+1}}{\pi} \frac{\sqrt{\pi \Gamma(\frac{1+\alpha}{2})}}{\alpha \Gamma(\frac{\alpha}{2})},$$

our proofs, in the case of harmonic mappings ($g \equiv 0$), yield the following estimates for co-Lipschitz constant

$$m_2 := \frac{2^{2K-2}\pi |K - 1/2|}{\sqrt{\pi(K^3 - K^2)\Gamma|K - 1|}M_1(K)^{2K}}$$

which is

$$\geq \frac{1}{K^2 M_1(K)^{2K}} \geq \frac{46^2}{K^2 46^{2K}}$$

and therefore is better than the corresponding constant

$$m_1 := \frac{2^{K(1-K^2)(3+1/K)/2}}{K^{3K+1}(K^2 + K - 1)^{3K}}$$

obtained in the paper [20] for every K (see the appendix below).

Similarly we obtain the following estimate for the Lipschitz constant (see (3.9) and (3.12)).

$$M' = \left(KM_1(K)^{1+1/K} \left(\frac{2^{K-2}\pi |K - 2/2|}{\sqrt{\pi(K-2)^2 - 1)\Gamma|K - 2/2|}} + \frac{K|g|_\infty^2}{2} \right)^{1/K} + \frac{7|g|_\infty}{6}. \right.$$

The last constant (if \(g \equiv 0 \)) is not comparable with the corresponding constant
\[
K^{3K+1/2}(K-1/K)^{1/2}
\]
obtained in the same paper [20] (it is better if \(K \) is large enough but it is not for \(K \) close to 1). It seems that in the proof of Theorem 3.1 there is some small place for improvement of \(M' \) (taking \(\nu_0 = 1 - K^{-1} \)).

3.1. Appendix. Let us prove that \(m_2 \geq m_1 \), where \(m_1 \) and \(m_2 \) are defined in (3.27) and (3.28). Since \((3 \cdot (3^2 + 3 - 1))^{3/2} > 46 \), the inequality follows directly if \(K \geq 3 \).

Assume now that \(1 \leq K \leq 3 \). First of all we have
\[
\frac{46^2}{K^2 46^2 K} - \frac{4^{2(K-1)^2/(1+K)} \cdot K^{-1}(K^2 + K - 1)^{3K}}{K^{1+K}} \geq \frac{1}{K^2} \left(46^2 - 2^{2(K-1)} \cdot 2^{1/(1-K^2)} \right).
\]
Therefore, the inequality
\[
46^{2K-2} \cdot 2^{1/(1-K^2)} \leq K^8
\]
implies \(m_2 \geq m_1 \).

Let \(K \leq 2 \). Then \(\frac{46}{2^{1+K}} < 16 = 2^4 \). By Bernoulli’s inequality \(2^{K-1} = (1 + 1)^{K-1} \leq 1 + K - 1 = K \) for \(K \leq 2 \). This yields (3.29).

Assume now that \(2 \leq K \leq 3 \). Then
\[
\frac{46}{2^{1+K}} < e^2.
\]
Thus
\[
\left(\frac{46}{2^{1+K}} \right)^K \leq e^{2(K-1)}.
\]
Therefore, if we prove
\[
K^{-1} \leq K^2 \text{ for } 2 \leq K \leq 3
\]
we will prove the inequality \(m_2 \geq m_1 \) completely.

Let \(x = K - 1 \). Then
\[
K^2 - e^{K-1} = 1 + 2x + x^2 - 1 - x - x^2/2 - x^3/3! - x^4/4! - \ldots
\]
\[
= x(1 + x/2 - x^2/3! - x^3/4! - \ldots)
\]
\[
\geq x(1 - x^3/4! - \ldots)
\]
\[
\geq x(1 - 0.5(e^2 - 1 - 2 - 2^2/2 - 2^3/6)) > x/2,
\]
as desired.

Acknowledgment. We thank the referee for providing constructive comments and help in improving the contents of this paper.

References